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Abstract The Beer–Lambert law is inadequate to describe the absorption of radiation
by a medium if the absorbing component is being simultaneously destroyed by the
radiation. A replacement law is derived and solved in terms of a family of polynomials.
The solution is confirmed numerically and by simulation.
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1 Introduction

The wide range of systems to which the title of this document has potential relevance
includes photochemical studies of photolabile species [1], neutron capture, water split-
ting [2], the dissipation of aerosol mists by sunlight, and the remediation of water by
ultra–violet radiation [3]. Perhaps the simplest realization of the phenomenon is the
passage of light through a solution of a dye that is bleached by the light; the discussion
that follows is couched in terms of that model system.

If the dissolved dye absorbs the light and is otherwise unaffected, the physics of
the absorption is described by a law that was first enunciated by Bouguer [4], but is
usually attributed to Lambert [5] and Beer [6]. Although it is more often encountered
in integrated form, the fundamental Beer–Lambert law is

d

dX
I (X) = − εC(X)I (X), (1)

K. B. Oldham (B)
Trent University, Peterborough K9J 7B8, Canada
e-mail: koldham@trentu.ca

123



1008 J Math Chem (2014) 52:1007–1019

where C is the dye concentration (in molecules per cubic metre), and X measures
distance (metres) along the light path. The empirical constant ε, which is specific to
the nature of the absorber and the light’s wavelength, goes by a variety of names,
one of which is “absorptivity” (square metres per molecule). Because light absorption
occurs by interaction of photons with dye molecules, it is appropriate to express the
light intensity I as a photon flux (photons per square metre per second).1 The notation
in Eq. (1) recognizes that the light intensity will, and the absorber concentration may,
vary from point to point along a ray of light.

However, if the dye is subject to bleaching, the absorption of light by the dye is
accompanied by its transformation to a non-absorbing2 product,and then the Beer–
Lambert law no longer tells the whole story. The bleaching causes a decrease in dye
concentration, leading to a diminution in absorption, and a consequential increase in the
local light intensity. A subtle interplay develops between intensity and concentration
and both become dependent not only on location, but also on time, T , an independent
variable (seconds) that is absent from the Beer–Lambert law.

2 How concentration and intensity interact

Though it is then inadequate, there is no reason to believe that the Beer–Lambert law,
in the form of Eq. (1), has become invalid when bleaching occurs. That equation still
applies at any particular site in the solution and at each instant of time, though it should
now be rewritten as

∂

∂ X
I (X, T ) = − εC(X, T )I (X, T ) (2)

to recognize the importance of time.
To proceed further, a specific system geometry will be adopted. Suppose the dilute

dye solution, of initially uniform concentration C(X, 0), fills a cell shaped as a rectan-
gular parallelepiped of volume AL. Separated internally by a distance3 L , two opposite
faces of the cell are transparent vertical plates, one of which, starting at time T = 0, is
perpendicularly irradiated by monochromatic light of constant and uniform intensity
I (0, T ). In a typical experiment, the intensity, I (L , T ), of the light emerging horizon-
tally from the second plate would be monitored at one or more times. Here, however,
interest is in predicting both the light intensity I (X, T ) and the dye concentration
C(X, T ) at all locations in 0 ≤ X ≤ L and at all time instants T ≥ 0.

Focus attention on a narrow vertical wafer of solution, of area A and thickness dX .
The Beer–Lambert law, Eq. (2), shows that the number of photons destroyed in this
wafer in the time interval dT is

1 Alternatively one might prefer to express I in Einsteins per square metre per second and C in moles per
cubic metre.
2 Only minor changes in the theory are needed if the product also absorbs light, but is otherwise inert.
3 The cell width L does not appear in the ensuing mathematics. Though necessarily finite in experi-
mental practice, there is no theoretical limit to the cell width. In the simulation L is accorded the value
2.5/[εC(X, 0)].
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[I (X, T ) − I (X + dX, T )]AdT = εAC(X, T )I (X, T )dXdT (3)

It will be assumed that the absorption of light occurs by interaction between a single
photon and a single molecule of dye, and leads to annihilation of the photon and
simultaneous destruction of the molecule. Not every photon-molecule encounter is
effective, however, and photochemists refer to the fractional success of the encounter
as the “quantum yield” φ (molecules per photon), a constant for a given dye at a
specified wavelength. Thus the number of molecules destroyed within the wafer in
time dT will be φ times the quantity in Eq. (3). That is,

[C(X, T ) − C(X, T + dT )] AdX = φ εAC(X, T )I (X, T )dXdT (4)

or equivalently

∂

∂T
C(X, T ) = φ εC(X, T )I (X, T ) (5)

Compare Eqs. (2) and (5). The remarkable result

∂

∂T
C(X, T ) = φ

∂

∂ X
I (X, T ) (6)

emerges. In words, this equation states that, apart from the constant factor φ, the
dependence of the concentration on time exactly matches the dependence of intensity
on distance, an important result that was recognized previously [7]. A single bivariate
function describes both dependences but, in itself, Eq. (6) provides no information as to
what the function might be. The remainder of this document is devoted to elucidating
this obscure bivariate function. First, however, it is opportune to adopt dimensionless
variables.

The two independent variables in the system—distance and time—are replaced as
follows:

x = εC(X, 0)X (7)

and

t = φ εI (0, T )T (8)

while the replacements for the two dependent variables—dye concentration and light
intensity—are

c(x, t) = C(X, T )

C(X, 0)
(9)

and

i(x, t) = I (X, T )

I (0, T )
(10)
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Each of the latter pair of dimensionless variables takes a value between zero and
unity. Equations (2) and (5) may now be combined and expressed in terms of the four
dimensionless quantities as

− ∂

∂t
c(x, t) = c(x, t)i(x, t) = − ∂

∂x
i(x, t) (11)

The goal is to solve this dual equation.
Though they are coupled, there are two distinct problems. The first of these is to

determine the distribution of concentration in space and time by solving the partial
differential equation given below with its attendant boundary conditions:

∂

∂t
c(x, t) = −c(x, t)i(x, t) with

⎧
⎨

⎩

c(x, 0) = 1
c(0, t) = exp{−t}
c(x,∞) = 0

(12)

The first and third of these boundary conditions are self-evident. The second arises
from noting that, at the x = 0 front of the cell, light intensity is invariant and so the
differential equation may be recast as

d

dt
ln{c(0, t)} = −i(0, t) = −1, (13)

and integrated to

c(0, t) = c(0, 0)exp{−t} = exp{−t}. (14)

A straightforward integration would solve the differential equation in (12) if the form
of the i(x, t) function were known. However, the latter function is itself the solution
to the second problem, which is described by the following set of equations:

∂

∂x
i(x, t) = −i(x, t)c(x, t) with

⎧
⎨

⎩

i(0, t) = 1
i(x, 0) = exp{−x}
i(∞, t) = 0

(15)

and is likewise insoluble without knowledge of the function c(x, t). A classic “chicken
and egg” paradox has arisen. Standard methods [8] of solving partial differential
equation appear to be inapplicable. Numerical methods [9] could be adopted, but
here the rudimentary method of “undetermined coefficients” [10] is pursued. The
form of the solutions to the twin problems will be guessed, the guesswork being later
confirmed. First, however, a brief digression is made to establish terminology.

3 Complementarity

Consider two bivariate functions f and g, each having a value that depends on the
two independent variables y and z. The functions f (y, z) and g(y, z) are distinct, but
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on interchanging the variables in one of these functions, it becomes identical with
the unchanged other; that is, f (z, y) = g(y, z) and f (y, z) = g(z, y). Though it has
other meanings in mathematics, here we use the term “complementary functions” to
describe the interrelation of f and g. For example, the functions f (y, z) = y2 exp{z}
and g(y, z) = z2 exp{y} are complementary.

It is evident from expression (11) that the functions ∂i/∂x and ∂c/∂t are comple-
mentary in their dependences on x and t . This fact does not guarantee that i and c are
themselves similarly complementary but, coupled with the complementarity evident
in the boundary conditions in (12) and (15), it implies that they are.

If f (y, z) and g(y, z) are complementary functions, their product4 f (y, z)g(y, z)
is “self-complementary”. Self-complementary bivariate functions have the property
that interchanging their independent variables leaves the function unchanged. Thus,
if the function h(y, z) is self-complementary, then h(z, y) = h(y, z). The function
(yz)2 exp{y + z} provides an example.

Notice from Eq. (11) that, because the product c(x, t)i(x, t) is self-complementary,
so too are the derivatives ∂c(x, t)/∂t and ∂i(x, t)/∂x . The existence of self-
complementarity in these three terms proves invaluable in the mathematics that fol-
lows.

4 A putative series solution

With the identity of the bivariate function F(,) yet to be established, consider the twin
expressions

c = exp{−t} [1 + t xF(t, x)] (16)

and

i = exp{−x} [1 + xtF(x, t)] (17)

as candidate solutions to the two problems posed in (12) and (15). Supporting this
candidacy is that the two candidate functions are complementary, and that, irrespective
of the form of the F(,) function,5 all six of the boundary conditions in (12) and (15) are
successfully satisfied by the formulas in Eqs. (16) and (17). At this stage, there is no
other justification for the postulate that the solutions to the twin problems can be so
represented. Nevertheless, some confidence is gleaned from the difficulty encountered
in searching for alternative expressions that meet all the boundary conditions. None
was found that is equally simple.

To allow a high degree of flexibility in the function F(x, t), it is considered to be
analytic and composed of all possible products of nonnegative integer powers of the
t and x variables. That is, F is treated as expansible as the two-dimensional power
series

4 As is their sum f (y, z) + g(y, z)
5 Provided that F remains finite for all positive values of x and t .
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Table 1 Early values of the coefficients

a jk k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

j = 1 1 − 1
2

1
6 − 1

24
1

120 − 1
720

1
5040

j = 2 − 1
2

5
4 − 13

12
29
48 − 61

240
25
288 − 253

10080

j = 3 1
6 − 13

12
73
36 − 301

144
1081
720 − 3613

4320

j = 4 − 1
24

29
48 − 301

144
2069
576 − 11581

2880

j = 5 1
120 − 61

240
1081
720 − 11581

2880

j = 6 − 1
720

25
288 − 3613

4320

j = 7 1
5040 − 253

10080

F(x, t) =
∞∑

j=1

∞∑

k=1

a jk t j−1xk−1, (18)

where the doubly subscripted a’s are constant numerical coefficients yet to be deter-
mined. Thus, the two dependent variables are assumed to be expansible as the series

c(x, t) = exp{−t}
⎡

⎣1 +
∞∑

j=1

∞∑

k=1

a jk t j xk

⎤

⎦ (19)

and

i(x, t) = exp{−x}
⎡

⎣1 +
∞∑

j=1

∞∑

k=1

a jk x j tk

⎤

⎦ . (20)

To evaluate the a jk coefficients, series (19) and (20) were substituted into the
three terms in expression (11), each of which was then expanded as a lengthy alge-
braic sum involving the coefficients and various combinations of powers of x and t .
On collection of the terms, it became possible to identify each value of a jk . In this
endeavour, repeated use was made of the self-complementarity of each of the three
terms, which implies that the coefficient of x j tk must match that of xkt j . Details of
this extensive operation will be omitted, but Table 1 presents some of the results. In
some stages during the compilation of this table, the facilities of Mathematica [11]
were employed to reduce both the algebraic tedium and the likelihood of arithmetic
blunders.

In as much as a limitless number of coefficients is accessible, albeit tediously, by
the method of undetermined coefficients, the F function is fully identified and the
twin problems inherent in the bleachable dye paradox are, in principle, now solved.
However, the solution is cumbersome and unappealing, motivating the following
section.
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5 Improving the solution

Inspection of the data in Table 1 reveals the following rules:

(a) akj = a jk . This reflects the self-complementarity of the F function.
(b) The sign of a jk is determined by the parities of j and k. If these indices share

the same parity (both even or both odd), the coefficient is positive; otherwise the
coefficient is negative.

(c) When each a jk coefficient is multiplied by j !k!, an odd integer results.
(d) Immediately evident from the first row of the table is that a1k = (−1)k+1/k!,

with a similar result for the columnar a j1 values.
(e) For a constant j , the magnitude of a jk at first increases with k and then declines,

implying convergence of
∑∞

k=1 a jk because the summands alternate in sign.

Inspired by rules (b) and (c), the formula for F in Eq. (18) may be reorganized into

F(x, t) = 1

xt

∞∑

j=1

(−t) j

j !
∞∑

k=1

[
(−1) j j !a jk

]
xk (21)

Consider the quantity in square brackets for ever-increasing values of k. Rule (d)
reveals that

[
(−1) j j !a j1

]
= −1. (22)

for k = 1. One observes by careful inspection of the k = 2 column in Table 1 that

[
(−1) j j !a j2

]
= 1

2

{
−3 + 2

(
2 j

)}
(23)

and, less obviously from the k = 3 column, that

[
(−1) j j !a j3

]
= −1

6

{
7 − 12

(
2 j

)
+ 6

(
3 j

)}
. (24)

A pattern emerges whereby the kth square-bracketed term may be expressed as a sum
of k terms:

[
(−1) j j !a jk

]
= (−1)k

k!
{

bk1 + bk2

(
2 j

)
+ · · · + bkk

(
k j

)}
= (−1)k

k!
k∑

h=1

bkhh j ,

(25)

where the b multipliers are integers of either sign, many of which are listed in Table 2.
Note that the table also includes supplementary, italicized, entries for certain kh pairs
that do not arise in Eq. (25); their significance will become apparent later. Each non-
italicized value of bkh is divisible by h and other regularities exist.
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Table 2 Early members of the b integers

bkh h = 0 h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 7 h = 8

k = 0 1 0 0 0 0 0 0 0 0

k = 1 −1 1 0 0 0 0 0 0 0

k = 2 1 −3 2 0 0 0 0 0 0

k = 3 −1 7 −12 6 0 0 0 0 0

k = 4 1 −15 50 −60 24 0 0 0 0

k = 5 −1 31 −180 390 −360 120 0 0 0

k = 6 1 −63 602 −2,100 3,360 −2,520 720 0 0

k = 7 −1 127 −1,932 10,206 −25,200 21,920 −20,160 5,040 0

k = 8 1 −255 6,050 −46,620 166,824 −257,520 272,640 −181,440 40,320

The combination of Eqs. (25) and (21) produces an expression in the form of three
nested summations:

xtF(x, t) =
∞∑

j=1

(−t) j

j !
∞∑

k=1

(−x)k

k!
k∑

h=1

bkhh j . (26)

However, the number of summations may be reduced to two by the following permu-
tation

xtF(x, t) =
∞∑

k=1

(−x)k

k!
k∑

h=1

bkh

∞∑

j=1

(−ht) j

j !

=
∞∑

k=1

(−x)k

k!
k∑

h=1

bkh
[
exp{−ht} − 1

]
. (27)

Notice from Table 2 that
∑k

h=1 bkh = (−1)k+1, permitting Eq. (27) to be rewritten as

xtF(x, t) =
( ∞∑

k=1

(−x)k

k!
k∑

h=1

bkh exp{−ht}
)

+ exp{x} − 1. (28)

If the choice is made to define bk0 = (−1)k , as in the italicized column in Table 2,
formula (28) may be contracted to

xtF(x, t) =
( ∞∑

k=0

(−x)k

k!
k∑

h=0

bkh exp{−ht}
)

− 1, (29)

and when this result is substituted into Eqs. (16) and (17), one discovers that the
concentration function is
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c = exp{−t}
∞∑

k=0

(−x)k

k!
k∑

h=0

bkh exp{−ht}, (30)

with the complementary result

i = exp{−x}
∞∑

j=0

(−t) j

j !
j∑

h=0

b jh exp{−hx} (31)

for the intensity.
Solutions (30) and (31) are superior to (19) and (20) inasmuch as the bkh coefficients

are easily calculable by the recursion formula6

b(k+1)h = hbk(h−1) − (h + 1)bkh, (32)

whereas each a jk requires individual calculation. However, further improvement is
feasible.

6 Solution in terms of polynomials

Consider a family of polynomials7 defined, for k = 1, 2, 3, . . ., by the recursion

Bk+1(z) = [z − 1]
d

dz
zBk(z) with B0(z) = 1. (33)

Because these polynomials play a paramount role in the mathematics of the bleachable
dye problem, they will be termed “bleaching polynomials”. Early family members are

B1(z) = −1 + z
B2(z) = 1 − 3z + 2z2

B3(z) = −1 + 7z − 12z2 + 6z3

B4(z) = 1 − 15z + 50z2 − 60z3 + 24z4

...

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

. (34)

Notice that all the coefficients of the bleaching polynomials are to be found in Table 2,
such that

Bk(z) =
k∑

h=0

bkhzh . (35)

For k > 0, the special values Bk(1) = ∑k
h=0 bkh = 0 and dBk

dz (1) = ∑k
h=0 hbkh = 1

are among the interesting properties of these polynomials. The first ensures that each
polynomial is exactly divisible by 1 − z, as is also evident from definition (33).

6 Applicable, after augmentation by the italicized entries in Table 2, to all positive integer values of k and h.
7 Not to be confused with the Bernoulli polynomials for which the same notation is in use.
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In terms of bleaching polynomials, solutions (30) and (31) are expressible as

c = exp{−t}
∞∑

k=0

(−x)k

k! Bk (exp{−t}) (36)

and

i = exp{−x}
∞∑

k=0

(−t)k

k! Bk (exp{−x}). (37)

It is straightforward to derive from these equations that

− ∂c

∂t
= 1

exp{t} − 1

∞∑

k=0

(−x)k

k! Bk+1 (exp{−t}) (38)

and, complementarily,

− ∂i

∂x
= 1

exp{x} − 1

∞∑

k=0

(−t)k

k! Bk+1 (exp{−x}) . (39)

Equations (36) and (37) provide a concise representation of the solution to the
problem of the bleachable dye. It remains to confirm that these solutions do, indeed,
satisfy expression (11).

7 Confirmation

The skills of the author proved inadequate to confirm analytically8 that Eq. (38) equals
the product of Eqs. (36) and (37), for all positive values of x and t . Confirmation was
therefore sought numerically. For a variety of values of the independent variables,
Table 3 lists the approximate magnitudes of the three terms in expression (11) cal-
culated9 via Eqs. (36)–(39) by Mathematica [11]. Discrepancies between trios of
tabulated values seldom exceed 0.1 %, providing a clear validation of the theory. To
make assurance doubly sure, a simulation was also performed.

8 Simulation

Dye bleaching experiments were simulated using the Excel 2010 software [12]. A two-
dimensional (N + 1) × (M + 1) array10 was created in which the vertical dimension,
corresponding to the discretized x coordinate, has (N + 1) evenly spaced sampling

8 Other than by retracing the derivation backwards through the b integers and the a coefficients.
9 By truncating the summations after k = 12 and adding one-half of the k = 13 term.
10 In the examples used to create the figures, the values M = N = 499 were employed.
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Table 3 Comparison of values
calculated from bleaching
polynomials

x t c i − ∂c
∂t ci − ∂i

∂x

0.5 0.5 0.71763 0.71763 0.51500 0.51499 0.51500

0.5 1.0 0.48967 0.80733 0.39532 0.39533 0.39532

0.5 1.5 0.32136 0.87357 0.28073 0.28073 0.28073

1.0 0.5 0.80733 0.48967 0.39532 0.39533 0.39532

1.0 1.0 0.61270 0.61270 0.37540 0.37540 0.37540

1.0 1.5 0.43844 0.72285 0.31692 0.31693 0.31692

1.5 0.5 0.87357 0.32136 0.28108 0.28073 0.28108

1.5 1.0 0.72286 0.43844 0.31685 0.31693 0.31685

1.5 1.5 0.56279 0.56279 0.31676 0.31673 0.31676

points indexed by n = 0, n = 1, n = 2, . . . , n = N − 1, n = N . Likewise the
horizontal dimension, corresponding to the discretized t coordinate, has M +1 evenly
spaced sampling points indexed by m = 0, m = 1, m = 2, . . . , m = M − 1, m = M .
A typical point in the array corresponds to x = n δ x and t = m δ t , small values
being chosen for δ x and δ t such that N δ x and M δ t respectively represent the largest
distance (the cell width L) and the longest time of interest.

Each sampling point has two associated values, namely i(n δ x, m δ t) and
c(n δ x, m δ t). Corresponding to the c(x, 0) = 1 and c(0, t) = exp{−t} boundary
conditions in (12), the c value associated with each m = 0 sampling point is set
to unity, whereas the c value associated with each n=0 point is set to exp{−m δ t}.
Similarly, one sets i(0, m δ t) = 1 and i(n δ x, 0) = exp{−n δ x}, as required by the
boundary conditions in (15). All other i(n δ x, m δ t) and c(n δ x, m δ t) values are ini-
tially unassigned. Unlike many other modelling exercises, once an ior a c value is
allocated, it is retained permanently.

The continuous operations described by the differential equations in (12) and (15)
are discretized into the twin formulas

i (n δ x, m δ t) = i ((n − 1) δ x, m δ t) [1 − δ xc ((n − 1) δ x, m δ t)]

c (n δ x, m δ t) = c (n δ x, (m − 1) δ t) [1 − δ t i (n δ x, (m − 1) δ t)]

}

(40)

and applied to all the sampling points whose values had not been initialized. The assign-
ment was made in the sequence (n, m) = (1, 1), (1, 2), . . ., (1, M), (2, 1), (2, 2), . . .,
(2, M), (3, 1), . . . , (N −1, M), (N , 1), (N , 2), . . . , (N , M). After the simulation was
complete, horizontal rows provide a time series of the dependent variable (i and c),
whereas vertical columns reveal changes with distance at a specific time instant.

Some results of the simulations are included in Figs. 1 and 2. They provide additional
confirmation of the validity of the results of this study.

9 Summary and examples

When a return is made to dimensional variables, the outcome of this study is a formula,
namely
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0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.2

0.4

0.6

0.8

1.0

1

2

0.5

0

0.2

Fig. 1 The curves in this figure employ data numerically modelled by Eqs. (36 or 37). Axis labels are
deliberately omitted, because the figure may be interpreted in two ways. One interpretation is that the lines
are plots of c versus x , initially and at four other instants of time, t = 0.2, t = 0.5, t = 1 and t = 2.
Alternatively, each curve may be regarded as a plot of i versus t at the entry plane x = 0 and at four
other locations, x = 0.2, x = 0.5, x = 1 and x = 2. The black points on the “0.5” curve result from the
simulation described in the text

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.2

0.4

0.6

0.8

1.0

1

2

0.5

0
0.2

Fig. 2 Again, there are two interpretations of the curves in this figure. They represent the declining dye
concentration c with time t at each of five x locations. Or they represent the extinguishing of the light
intensity i as the beam progresses through the solution, at each of five different times t . As in the earlier
figure, the curves arise from mathematical modelling, whereas the black points come from simulation

C(X, T )

C(X, 0)
=

∞∑

k=0

(− εC(X, 0)X)k

k!
Bk (exp {−φ εI (0, T )T })

exp {φ εI (0, T )T } , (41)

that describes how the concentration C of a radiation-absorbing photolabile component
of a medium depends on distance X and time T when the medium is irradiated by a
constant and uniform photon flux of intensity I (0, T ). The constants C(X, 0) and εare
the initially uniform concentration of the absorber, and its absorptivity. The quantum
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yield φ represents the fraction of photon-absorber encounters that lead to destruction
of the absorber. The complementary formula

I (X, T )

I (0, T )
=

∞∑

k=0

(−φ εI (0, T )T )k

k!
Bk (exp {− εC(X, 0)X})

exp {εC(X, 0)X} (42)

describes the attenuation of the photon flux with distance and its local increase with
time. That these equations provide valid solutions to the problem has been confirmed
numerically and by simulation.

Diagrams have been prepared to exemplify the predictions of Eqs. (36) and (37).
Figure 1 shows profiles of the dye concentration plotted versus distance at a number of
instants in time, while Fig. 2 reports how concentration evolves with time at the entry
plane and four other vertical planes within the cell. Note from this second figure that
whereas the concentration decays exponentially, with time, at the entry plane, x = 0,
the initial fall-off has become linear at x = 1.

The complementarity of the c and i variables with respect to the independent vari-
ables x and t means that Figs. 1 and 2 serve equally well to depict the behaviour of the
light intensity. Figure 2 provides five “snapshots” of how the photon flux declines with
distance, whereas the plots in Fig. 1 are of i versus t at a selection of sites, increasingly
distant from the entry plane.
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